Influence of intervening mismatches on long-range guanine oxidation in DNA duplexes.

نویسندگان

  • P K Bhattacharya
  • J K Barton
چکیده

A systematic investigation of the efficiency of oxidative damage at guanine residues through long-range charge transport was carried out as a function of intervening base mismatches. A series of DNA oligonucleotides were synthesized that incorporate a ruthenium intercalator linked covalently to the 5' terminus of one strand and containing two 5'-GG-3' sites in the complementary strand. Single base mismatches were introduced between the two guanine doublet steps, and the efficiency of transport through the mismatches was determined through measurements of the ratio of oxidative damage at the guanine doublets distal versus proximal to the intercalated ruthenium oxidant. Differing relative extents of guanine oxidation were observed for the different mismatches. The damage ratio of oxidation at the distal versus proximal site for the duplexes containing different mismatches varies in the order GC approximately GG approximately GT approximately GA > AA > CC approximately TT approximately CA approximately CT. For all assemblies, damage found with the Delta-Ru diastereomer was found to be greater than with the Lambda-diastereomer. The extent of distal/proximal guanine oxidation in different mismatch-containing duplexes was compared with the helical stability of the duplexes, electrochemical data for intercalator reduction on different mismatch-containing DNA films, and base-pair lifetimes for oligomers containing the different mismatches derived from 1H NMR measurements of the imino proton exchange rates. While a clear correlation is evident both with helix stability and electrochemical data monitoring reduction of an intercalator through DNA films, damage ratios correlate most closely with base-pair lifetimes. Competitive hole trapping at the mismatch site does not appear to be a key factor governing the efficiency of transport through the mismatch. These results underscore the importance of base dynamics in modulating long-range charge transport through the DNA base-pair stack.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid radical formation by DNA charge transport through sequences lacking intervening guanines.

Using the flash-quench technique to probe DNA charge transport in assemblies containing a tethered ruthenium intercalator, the kinetics and yield of methylindole radical formation as a function of DNA sequence were studied by laser spectroscopy and biochemical methods. In these assemblies, the methylindole moiety serves as an artificial base of low oxidation potential. Hole injection and subseq...

متن کامل

Mapping Structurally Defined Guanine Oxidation Products along DNA Duplexes: Influence of Local Sequence Context and Endogenous Cytosine Methylation

DNA oxidation by reactive oxygen species is nonrandom, potentially leading to accumulation of nucleobase damage and mutations at specific sites within the genome. We now present the first quantitative data for sequence-dependent formation of structurally defined oxidative nucleobase adducts along p53 gene-derived DNA duplexes using a novel isotope labeling-based approach. Our results reveal tha...

متن کامل

How to Change the Redox Potential of Guanine?

Due to some important applications of guanine electrode in scientific and technology research such as electro-chemical DNA based biosensors, and a problem of high redox potential of guanine (0.81 V), our research study concentrates on reducing guanine redox potential by substituting Cu, Ag, Au, CH3, C2H5 and Cl on sites of 1, 2 and 9 of guanine. A 5.0% reduction...

متن کامل

Sequence Dependent Long Range Hole Transport in DNA

A guanine radical cation (G+•) was site-selectively generated in double stranded DNA and the charge transfer in different oligonucleotide sequences was investigated. The method is based on the competition between a charge transfer from G+• through the DNA and its trapping reaction with H2O. We analyzed the hole transfer from this G+• to a GGG unit through one, two, three, and four AT base pairs...

متن کامل

Selective one-electron oxidation of duplex DNA oligomers: reaction at thymines.

The one-electron oxidation of duplex DNA generates a nucleobase radical cation (electron "hole") that migrates long distances by a hopping mechanism. The radical cation reacts irreversibly with H2O or O2 to form oxidation products (damaged bases). In normal DNA (containing the four common DNA bases), reaction occurs most frequently at guanine. However, in DNA duplexes that do not contain guanin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 123 36  شماره 

صفحات  -

تاریخ انتشار 2001